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• Funded primarily by the Department of Energy, we also do extensive work for/with the Departments of 
Defense and Homeland Security, the Intelligence Community, et al.

• Our strategy reflects US government priorities including nuclear security, intelligence, defense, 
emergency response, nonproliferation, counterterrorism, and more.

• We help to ensure the safety, security, and effectiveness of the US nuclear stockpile.
• Since 1992, the United States no longer performs full-scale testing of nuclear weapons.  This has 

necessitated continuous, ongoing leadership in large-scale simulation capabilities realized through 
investment in high-performance computing.

• Established in 1943 as “Site Y” of the Manhattan Project
• Mission:  To solve National Security challenges through 

Scientific Excellence
• One of the largest science and technology institutes in the 

world, conducting multidisciplinary research in fields such as 
national security, space exploration, renewable energy, 
medicine, nanotechnology, and supercomputing.

Introduction
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• LANL’s history in HPC dates back to the early ’50s.
• Accomplishments include:

• Helped IBM develop Stretch, the 1st transistor-based 
supercomputer

• The 1st vector computer, Cray-1, deployed here
• Our CM-5 was #1 on the inaugural Top500 List
• 1st hybrid supercomputer (using IBM POWER and 

PlayStation Cell processors), Roadrunner, was also 
1st to break the PetaFLOP/s barrier

• Led by Gary Grider, creator of Burst Buffer technology

• We support over 2000 
unique users across more 
than 100 different 
classified/open science 
projects on 20+ clusters

LANL has been a leader in HPC since before HPC was HPC!

Introduction
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Problem #3:  We are finite, as is our time.
• We generally won’t install extra software with low user demand.
• Unique or unusual use cases tend to be lower priority.
• The line between “innovator” and “crackpot” is often rather blurry….
• Particularly in academic/research computing, teams are small with broad 

focus and must prioritize among many diverse problems/tasks.

Problem #2:  We’re old.  And not getting any younger.
• Schools are teaching clusters, “parallel”/scalable/distributed

software development...but usually “embarrassingly parallel” (e.g., map/reduce).
• All the “cool kids” are using Ubuntu (or Arch, or Alpine...), not RHEL.
• Modern Machine Learning and Data Analytics toolsuites are non-trivial.

Problem #1:  HPC clusters have narrowly focused software stacks.
• They do serial and parallel-MPI tasks well...but that’s it.
• Compute node images are often in RAM/NFS & kept small.
• Managing multiple OSs, and required expertise, is rare & labor intensive.

Software build combinatorics is among the hardest problems in HPC management!

Mo’ Users, Mo’ Problems!

First World Problems in HPC
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User-Defined Software Stacks (UDSS), also known as User-Defined Images (UDI) or Bring-Your-
Own-Environment (BYOE), allow users to supply not only their own applications/source to run on HPC 
systems but also the environment – up to and including entire OS images – in which they should run!

Advantages include portability, usability, consistency, time savings…

Potential disadvantages include missing functionality (HSN, accelerators, filesystems), performance 
degradation; thus, addressing these should be part of the design of any HPC-focused solution!

In rare, specific cases, certain packages may address this independently
by building static binaries or coupling dependencies with executables:
• Works everywhere with no privileges required
• Requires build-time (and sometimes run-time) support
• May not be feasible in all situations
• For everyone else, we have a few options…

The Solution:  Pawn It Off on the Users via UDSS/UDI/BYOE!

This sounds counter to making our customers’ lives easier, but it’s not!

Make It Someone Else’s!
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Nope.

Advantages
• Available everywhere immediately
• Requires no privileges
• No additional privacy/security risk
• Direct access to all hardware
• No performance penalty
• Theoretically applies to any open source software library/app/stack

Disadvantages
• It’s the 21st Century; we no longer want to party like it’s 1999!
• Tedious and time-consuming
• Error-prone with exponential propagation of errors/time-to-fix
• Hard to update; start over each time
• No standard workflow/reproducibility
• Provides neither portability nor consistency

Computers are awesome at repetitive, consistent tasks.  People…not so much.

The Old-Fashioned Way

Option #1:  Compile It Yourself
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“There’s GOT to be a
BETTER WAY!!”

Advantages
• Available for most IA32/x64 systems
• Requires no privileges
• No additional privacy/security risk
• Direct access to all hardware
• No performance penalty

Disadvantages
• Frequently still requires building from source (time and space 

constraints)
• Varying degrees of HPC support
• Varying degrees of reproducibility, portability, consistency, workflow
• Users/consultants bear entire burden

If You Must…
• Good options include EasyBuild, Lmod, Spack
• Also Anaconda, nixOS

This is the current solution at most HPC & RC centers.

The Slightly Less Old-Fashioned Way

Option #2:  Environment Manager
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Should HPC become the Cloud?

Advantages
• Ultra-flexible (any kernel/OS/arch)
• Strong-to-complete isolation
• Common use cases perform well

Disadvantages
• Performance suffers for most HPC use cases, often significantly.
• Performance/security tradeoffs (i.e., paravirtualization sacrifices 

isolation/security to increase performance)
• Infrastructure can be complex.
• Direct/performant access to hardware may require privileges that 

are not easily granted at runtime or with minimal risk.
• Not all “exotic” HPC hardware supported.
• Entire OS must be provisioned and booted.
• Requires separate hostname/IP, separate network configuration, 

separate firewall, etc.
• User-supplied VMs often suffer from lack of CM/prescriptiveness.

Someday HPC and Cloud may very well merge…but not today.

The Cloudy Way

Option #3:  Virtualization (VMs)
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Should HPC use containers?

Advantages
• Enough flexibility (only share kernel)
• Enough isolation (namespaces, etc.)
• Standard, reproducible workflow
• Bare-metal performance (or close)
• Minimal-to-no burden on users or consultants in most cases 

(presumes correct solution choice)
• Lightweight, simple, and easy to use (again, presumes correct 

solution choice)

Disadvantages
• Require recent Linux kernel/distro (SLES 12SP2, RHEL 7.4, 

Ubuntu 16.04, Linux LTS 4.4/4.9) or privilege
• Occasional growing pains due to newness (feature-complete 

since 2013, secure since 2015)
• Container expertise in HPC still rare; thus, bad/misleading info 

& myths are ubiquitous (even in publications)!

While (arguably) new, containers offer the ideal performance/isolation balance.

Containers for the Win!

Option #4:  Containers
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Good question!  Not everyone agrees.
Here’s our take:

Linux Containers:
• Use one or more kernel namespaces, along with zero 

or more additional optional kernel features (e.g., 
cgroups) to provide isolation for (i.e., “contain”) a 
process, along with its child processes, if any;

• Provide a false/distorted view of the underlying 
system and its available resources;

• Envelope/restrict unprivileged process(es) such that 
escape/escalation is “impossible;” and

• Facilitate application security by providing capability 
constraints, integrity assurance, and content 
validation as required via industry-standard formats 
and workflows (for application containers).

Containers are processes that we want to group together and collectively lie to.

Terminology

So...Umm...These Container Things...Like, What Are They?
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The Linux Kernel supports 6 namespaces as of version 3.8, 7 as of 4.6.
• 6 Privileged Namespaces (require CAP_SYS_ADMIN to create)

• mount – Private filesystem mount points, recursion/propagation controls
• pid – Private view of process IDs and processes, init semantics
• uts – Private hostname and domainname values
• net – Private network resources (devices, IPs, routes, ports, etc.)
• ipc – Private IPC resources (SysV IPC objects, POSIX msg queues)
• cgroup – Private control group hierarchy (Linux 4.6+ only)

• 1 Unprivileged Namespace (requires no capabilities to create)
• user – Private UID and GID mappings

• Can be combined with other namespaces, even if unprivileged
• System Call API:  unshare(2), clone(2), setns(2)

Further reading:  “Namespaces in Operation” (https://lwn.net/Articles/531114/)

Namespaces are the ways in which the kernel empowers us to lie about our host.

Lies, Damned Lies, and Containers

Namespaces, You Say?

https://lwn.net/Articles/531114/
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The Linux kernel has several additional subsystems that containers sometimes use:
• cgroups – Control hierarchical resource management and usage constraints

• Latest kernels (4.6+) even have namespaces for this!
• Schedulers/RMs use to track/control job resource utilization

• seccomp-bpf – Berkeley Packet Filter-based syscall filtering
• Frequently used to prevent containers from exceeding their scope

• prctl(*_NO_NEW_PRIVS) – Prevent privilege escalation
• Kernel-level flag that prevents execve() granting privileges.
• Persists across all calls to fork(), clone(), and execve()
• Privileged containerization is unsafe without this.

• SELinux – MLS/MAC Labeling system for files/processes
• Allows admins precise control over actions, roles of applications

• AppArmor – Profile-based MAC system for limiting apps’ abilities
• Similar to SELinux but without filesystem labeling features

These features help us protect the lies, enforce the lies, and insulate the liars!

Protecting the Lies

Additional (Optional) Container Elements
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Lightweight Container Systems
▪ Generally only provide runtime; most leverage 

Docker/OCI/K8s ecosystem

▪ Tend to require existing directory tree (i.e., 
flattened image) to run in

▪ Examples:  RunC, CCon, NsJail, unshare(1), 
systemd-nspawn(1), SARUS

▪ …and of course, Charliecloud!

Full-featured Container Systems
▪ Support building, distribution, validation, and 

execution

▪ Provide for complete handling of containers 
throughout lifecycle

▪ Examples: Docker, CRI-O, LXC/LXD

▪ Most modern container engines now implement Open 
Container Initiative (OCI) Image and/or Runtime 
Spec(s)

▪ Building containers is still a per-system function.  OCI 
does NOT “do” building!

• Dockerfiles are the de facto standard; robust, 
capable DSL

• CoreOS Rocket supplied acbuild based around 
traditional shell-fu

• ProjectAtomic’s buildah supports both!

The Container Landscape
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All container solutions expose (formerly) privileged operations to 
unprivileged users, requiring us to accept a new security boundary.  
So which one would you choose?
• one that’s new and known to be flawed?
• a well-understood one that still relies on setuid-root binaries?
• the one that provides all relevant information to the kernel regarding 

identity and separation of privilege?

Modern Cybersecurity requires many layers; true security isn’t merely the absence of access but 
rather the presence of protection!
• Prior to invocation, container security relies on a wide variety of content provenance and assurance methodologies 

(e.g., non-repudiation, CAS) to guarantee end-to-end data integrity and transport security.
• At runtime, container security relies entirely on the separation of authorities/roles within the Linux kernel (e.g., 

seccomp, MLS).  If the kernel fails, the container fails.
• Lightweight container solutions have the advantage of leaving much of that to others.
• Most mindshare is in Linux kernel hardening and native unprivileged containers.

There’s “Secure,” and there’s “Not Exactly.”  Make sure you choose the right one!

Container Security

Let’s Talk Security
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• LANL’s Container Runtime
• Available on GitHub:  https://github.com/hpc/charliecloud

• 2018 R&D 100 Winner!

• Recent developments in version 0.9.x (currently 0.9.9):
• New Vagrantfile for generating Charliecloud-enabled (and Docker-enabled) 

VM images based on CentOS 7 Virtualbox image.
• New example containers and tutorials based on MPICH, Spack, spokeo, 

umoci, OpenMPI 3.1.3, and more.
• New ch-fromhost utility to seamlessly integrate host-based resources into 

Charliecloud containers (HSN, GPU, libraries, etc.)
• Improved spec file for potential future inclusion in upstream distros.
• Significantly improved documentation (also fixed building of documentation on 

RHEL-based platforms)

Charliecloud is LANL’s fully unprivileged, user-installable container suite

Our Recommended Solution

Charliecloud

https://github.com/hpc/charliecloud
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• Docker/Moby aren’t (yet?) a good fit for HPC:
• Performance - OverlayFS is slooooooow due to layering!
• Integrity - File removal is done by “whiting out” which causes subtle issues.
• Associativity - Docker containers are children of daemon, not CLI.

• NERSC’s Shifter offers appealing user experience but has overhead
• User downloads container(s) from Docker Hub, submits jobs to run in them.
• Admin must set up & maintain Image Gateway.
• Relies primarily on chroot(); requires privilege.

• Small/simple APIs should yield small/simple code!
• Charliecloud weighs in at just over 1000 LoC.
• Compare to NSJail (4,000), Shifter (19,000),

Singularity (15,000), and Docker (160,000)!
• Charliecloud’s security boundary is the kernel

• Also worth watching:  Moby, Rootless RunC, CRI-O/podman, Rootless Docker

Choosy Users Choose userns!

Why Charliecloud?



18-Apr-2019   |   19Los Alamos National Laboratory    |    UNCLASSIFIED

$ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello

creating new image /var/tmp/hello

/var/tmp/hello unpacked ok

$ ch-run /var/tmp/hello -- cat /etc/debian_version

8.9

$ cd ~/charliecloud/examples/serial/hello

$ ls

Dockerfile  hello.sh  README  test.bats

$ ch-build -t hello ~/charliecloud

Sending build context to Docker daemon 15.19 MB

[...]

Successfully built 30662b3f94f3

$ ch-docker2tar hello /var/tmp

57M /var/tmp/hello.tar.gz

Charliecloud Demo/Walkthrough
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• Supercomputing 2017 Paper by Reid Priedhorsky and Tim Randles
• “Charliecloud:  Unprivileged Containers for UDSS in HPC”
• Los Alamos Tech Report LA-UR-17-30438
• http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438

• ;login: Article “Linux Containers for Fun & Profit in HPC”
by Reid Priedhorsky
• https://www.usenix.org/publications/login/fall2017/priedhorsky

• Documentation: https://hpc.github.io/charliecloud (includes tutorials!)
• Source Code: https://github.com/hpc/charliecloud
• Mailing List: charliecloud@groups.io || https://groups.io/charliecloud
• Contact Reid (reidpr@lanl.gov), Tim (trandles@lanl.gov),

or Michael (mej@lanl.gov, @mej0 on Twitter)

Try it out, and let us know what you think!  Admins, devs, and users welcome!

For More Information…

Charliecloud Resources

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438
https://www.usenix.org/publications/login/fall2017/priedhorsky
https://hpc.github.io/charliecloud
https://github.com/hpc/charliecloud
mailto:charliecloud@groups.io
https://groups.io/charliecloud
mailto:reidpr@lanl.gov
mailto:trandles@lanl.gov
mailto:mej@lanl.gov
https://twitter.com/mej0


Any Questions?
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Michael Jennings
Los Alamos National Lab

mej@lanl.gov  ||  mej@eterm.org
f/kainx ||  t/@mej0  ||  i/kainx ||  m/@mej0
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